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ANALYSIS OF THE WAVE SOLUTION

OF THE ELASTOKINETIC EQUATIONS OF A COSSERAT

CONTINUUM FOR THE CASE OF BULK PLANE WAVES

UDC 534.22.094.1M. A. Kulesh, V. P. Matveenko,

M. V. Ulitin, and I. N. Shardakov

A study is made of waves in a Cosserat continuum, whose strain state is characterized by independent
displacement and rotation vectors. The propagation of longitudinal and transverse bulk waves is
considered. Wave solutions are sought in the form of wave trains specified by a Fourier spectrum
of arbitrary shape. It is shown that if the solution is sought in the form of three components of
the displacement vector and three components of the rotation vector which depend on time and the
longitudinal coordinate, the initial system is split into two systems, one of which describes longitudinal
waves, and the other transverse waves. For waves of both types, dispersion relations and analytical
solutions in displacement are obtained. The dispersion characteristics of the solutions obtained differ
from the dispersion characteristics of the corresponding classical elastic solutions.

Key words: plane waves, dispersion, Cosserat continuum, analytical solutions.

Introduction. Linear models of the asymmetric theory of elasticity, in particular, the Cosserat model, have
been the subject of extensive studies. However, there is still no clear understanding of the role of this theory in
the mechanics of deformable solids. The importance of moment theory can be determined by a correctly performed
experiment using modern experimental facilities. Examples of such facilities are mechanical [1] or laser [2] sensors,
which allow direct measurements of rotation velocities in three perpendicular directions. These facilities are currently
employed (though not widely) in seismic and geophysical studies. Figure 1 gives an experimental six-component
seismogram recorded during an underground non-nuclear explosion of an approximately 1-kton charge at a depth
of 390 m and an epicenter distance of 1 km. The seismogram shows three components of the acceleration vector
and independently measured components of the rotation velocity of ground at the location of the sensor [1].

In many papers, it is assumed that the components of the rotation and displacement vectors are linked by a
relation that corresponds to the classical theory of elasticity or the asymmetric theory of elasticity with constrained
rotation, for example, Cosserat pseudocontinuum theory (see, for example, [3]):

ω = (1/2) rotu.

Similar dependences with different coefficients are obtained in some dynamic problems for the reduced Cosserat
continuum model [4]. In the complete linear Cosserat theory [5], the rotation ω and displacement u vectors
are kinematically independent. On the one hand, this leads to an increase in the number of necessary material
parameters. On the other hand, from a physical point of view, the complete theory is more realistic than, for
example, the Cosserat pseudocontinuum theory [5]. However, there are still no experimental data on the nature of
the relationship between the displacement and rotation vectors, although, from the seismogram presented in Fig. 1,
follows that such studies, in principle, are feasible.
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Fig. 1. Results of experimental measurements of the components of the acceleration vectors (a) and
rotation velocities (b) in an underground explosion of a 1-kton charge at a depth of 390 m and an
epicenter distance of 1 km [1].

Thus, wave experiments, especially in geological media, provide information for the identification of models
of asymmetric media. Such experiments have been performed; in particular, results of ultrasonic studies of homoge-
neous media were used to identify the Le Roux model and the Cosserat pseudocontinuum model in [6] and to identify
the linear Cosserat continuum model in [7, 8]. Geological media are a more complex subject of research since, in
them, several types of waves, as a rule, are simultaneously excited and recorded: longitudinal and transverse direct
and reflected bulk waves, Rayleigh waves, and Love waves, Lamb, and Stonely waves.

From the aforesaid, it follows that obtaining and analyzing wave solutions for various microstructural models
is an urgent problem. In the present work, we continue to study the complete Cosserat model [5]. For this model,
a number of new characteristic features have been determined previously. Dispersion of Rayleigh elastic surface
waves was found in [9, 10] (in the classical theory of elasticity, Rayleigh waves do not exhibit dispersion). A detailed
analysis of the components of the displacement and rotation vectors of Rayleigh waves was performed in [11]. An
effect due to the propagation of a surface transverse wave with horizontal polarization was found. Geometrically,
this wave is similar to a Love wave, but, according to the classical theory of elasticity, the existence of a Love wave
as a surface wave is due to the presence of a layer on a half-space. As the thickness of the layer tends to zero, the
Love wave becomes a bulk wave. It has been shown [12] that, in a Cosserat continuum, a horizontally polarized,
transverse wave which decays with increasing depth exists in the absence of a plane layer. Another solution, which
has no analogs in the classical theory of elasticity, was obtained in [13]. This solution describes a wave which
propagates in a plate and has one transverse component of the displacement vector and two components of the
rotation vector. This wave has more numbers of modes than Lamb waves, all modes possess dispersion, and the
displacement in all modes depend on depth.
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In the present paper, a general equation of motion for plane waves in a Cosserat continuum is considered
and one more particular solution is obtained which describes the propagation of longitudinal and transverse bulk
waves of displacement and rotation. Solutions of the equations of motion are obtained for the case of nonmonochro-
matic waves and describe the propagation of wave trains specified by a Fourier spectrum of arbitrary shape. The
nonmonochromatic representation is chosen because it is the most suitable for comparison with the experimental
data obtained in seismic measurements. The basic equations of a Cosserat continuum and the general equation of
plane waves are also given in the paper. A particular solution for bulk waves is constructed and compared with the
solutions obtained in [11–13].

1. Formulation of the Problem. We consider a space filled with an elastic isotropic medium described
by the continuum Cosserat model [5]. Mass forces and moments are absent. We use Cartesian coordinates, in which
a plane wave propagates in the x direction. The constitutive relations have the following form:

— the equations of motion

∇ · σ̃ + X = ρü, σ̃t : Ẽ + ∇ · μ̃ + Y = jω̈; (1.1)

— the geometrical relations

γ̃ = ∇u − Ẽ · ω, χ̃ = ∇ω; (1.2)

— the physical equations

σ̃ = 2μγ̃(S) + 2αγ̃(A) + λI1(γ̃)ẽ, μ̃ = 2γχ̃(S) + 2εχ̃(A) + βI1(χ̃)ẽ. (1.3)

In view of (1.1)–(1.3), the equations of motion for the displacement vector u and the rotation vector ω are
written as

(2μ + λ)graddiv u − (μ + α)rot rotu + 2α rotω + X = ρü,

(β + 2γ)graddiv ω − (γ + ε)rot rotω + 2α rotu − 4αω + Y = jω̈.
(1.4)

In (1.1)–(1.4), X is the specific density vector of the bulk forces, Y is the specific density vector of the bulk
moments, γ̃ and χ̃ are the strain and bending-torsion tensors, σ̃ and μ̃ are the stress and moment stress tensors,
μ and λ are the Lamé constants, α, β, γ, and ε are physical constants of material for the elastic Cosserat model, ρ is
the density, j is the density of the moment of inertia (a measure of the inertia of the medium in rotation), E is the
Levy-Civita tensor of the third rank, ( · )(S) is the symmetrization operation, ( · )(A) is the alternation operation,
∇( · ) is the nabla-operator, I1( · ) is the first invariant of the tensor, and ẽ is the unit tensor [14]. In this model,
the tensors γ̃ and σ̃ are asymmetric.

Unlike in the well-known papers [9, 10], which consider only monochromatic waves, following the procedure
described, for example, in [15], we represent the general solution of system (1.4) in the form of Fourier integrals
with respect to all components of the displacement vector un(x, z, t) and the rotation vector ωn(x, z, t):

un(x, z, t) =

∞∫

−∞
Un(z) ei(kx+ft) Ŝ0(f) df, ωn(x, z, t) =

∞∫

−∞
Wn(z) ei(kx+ft) Ŝ0(f) df. (1.5)

Here the subscript n takes values x, y, z, i is the imaginary unit, k is the wavenumber, f is the angular frequency
(related to the physical frequency p, measured in Hertz, by the relation f = 2πp), t is time, Un(z) and Wn(z) are
amplitude functions, which depend on depth, and Ŝ0(f) is a complex spectral function that corresponds to the
Fourier spectrum of the source signal and defines the shape of the wave train. Here, only the real parts of the
components of the displacement and rotation vectors have a physical meaning.

The nonmonochromatic representation (1.5) in the form of a wave train of arbitrary shape which is limited
in the time and Fourier spaces is chosen to study the dispersion properties of waves and compare both the solutions
and dispersion curves with experimental results similar to those presented in Fig. 1.

In this case, it is reasonable to perform a continuous Fourier transform of the equations of motion (1.4)
and representation (1.5). This leads to the following system of equations for the Fourier images of the required
components of the displacement and rotation vectors (it is assumed that mass forces and moments are absent):

(2μ + λ)graddiv û − (μ + α)rot rot û + 2α rot ω̂ + ρf2û = 0,

(β + 2γ)graddiv ω̂ − (γ + ε)rot rot ω̂ + 2α rot û − (4α − jf2)ω̂ = 0.
(1.6)
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The Fourier transform of representation (1.5) has the form

û = {Ux(z), Uy(z), Uz(z)}t eikx Ŝ0(f), ω̂ = {Wx(z), Wy(z), Wz(z)}t eikx Ŝ0(f). (1.7)

Substituting (1.7) into (1.6), we obtain two uncoupled systems of linear differential equations for the functions
Ux(z), Uz(z), and Wy(z) which describe longitudinal waves:

(μ + α)U ′′
x (z) + (ρf2 − k2(λ + 2μ))Ux(z) + ik(λ + μ − α)U ′

z(z) − 2αW ′
y(z) = 0,

(λ + 2μ)U ′′
z (z) + (ρf2 − k2(μ + α))Uz(z) + ik(λ + μ − α)U ′

x(z) + 2ikαWy(z) = 0, (1.8)

(γ + ε)W ′′
y (z) + (jf2 − k2(γ + ε) − 4α)Wy(z) + 2αU ′

x(z) − 2ikαUz(z) = 0,

and two uncoupled systems of linear differential equations for Uy(z), Wx(z), and Wz(z) which describe transverse
waves:

(γ + ε)W ′′
x (z) + (jf2 − k2(β + 2γ) − 4α)Wx(z) + ik(β + γ − ε)W ′

z(z) − 2αU ′
y(z) = 0,

(β + 2γ)W ′′
z (z) + (jf2 − k2(γ + ε) − 4α)Wz(z) + ik(β + γ − ε)W ′

x(z) + 2ikαUy(z) = 0, (1.9)

(μ + α)U ′′
y (z) + (ρf2 − k2(μ + α))Uy(z) + 2αW ′

x(z) − 2ikαWz(z) = 0.

Systems (1.8) and (1.9) admit solutions of three types. By choosing boundary conditions, it is possible to
obtain solutions for Rayleigh waves in a half-space which decay with increasing depth [11, 12], for Lamb waves in a
plate which do not decay with increasing depth [13], and for plane bulk waves with amplitude independent of depth
(constant with depth). In the present paper, solutions of the third type are studied for the purpose of interpreting
the quantities included in the solutions of the first and second types.

2. Construction and Analysis of the Solution. Solutions for longitudinal bulk waves are obtained
from the conditions Ux(z) = Ux, Uy(z) = 0, Uz(z) = 0, Wx(z) = Wx, Wy(z) = 0, and Wz(z) = 0. Substituting this
conditions into Eqs. (1.8) and (1.9), we obtain two independent dispersion equations, the first of which corresponds
to longitudinal displacement waves, and the second to longitudinal rotation waves:

(ρf2 − k2(λ + 2μ))Ux(z) = 0, (jf2 − k2(β + 2γ)− 4α)Wx(z) = 0.

These equations leads to two dispersion dependences:

k1(f) = f

√
ρ

λ + 2μ
, k2(f) =

√
jf2

β + 2γ
− 4α

β + 2γ
.

In this case, it is reasonable to convert to dimensionless variables using the dimensionless parameters C1 and C5:

k1(f) = f/C1, k2(f) =
√

f2/C2
5 − k2

0 , f1(f) = C1k, f2(k) =
√

C2
5k2 + w2

0 ,

C2
1 =

λ + 2μ

ρX2
0f2

0

, C2
5 =

β + 2γ

jX2
0f2

0

, w0 = 2
√

α

j
, k0 = 2

√
α

β + 2γ
.

(2.1)

Here X0 is a certain characteristic dimension and f0 is a certain characteristic frequency. Thus, in addition to the
longitudinal-wave velocity C1, it is necessary to introduce the parameter C5 dependent on the velocity of longitudinal
rotation waves. In addition, for the longitudinal rotation waves, there is a forbidden zone of frequencies characterized
by the cutoff frequency w0. From the solution considered, it also follows that the rotation waves possess dispersion,
but, at high frequencies, the dispersion curve is described by the asymptotic dependence kr(f) = f/C5. The
parameter C5 was used in [11–13] to obtain solutions that correspond to Rayleigh and Lamb waves. From the
results given above, its physical meaning is the limiting velocity of propagation of longitudinal rotation bulk waves.

Below, we give dependences of the wavenumber and phase velocity on frequency (2.1) for the following values
of material parameters: λ = 2.8 · 1010 N/m2, μ = 4 · 109 N/m2, ρ = 105 kg/m3, α = 2 · 109 N/m2, β = 108 N,
γ = 1.936 · 108 N, ε = 3.0464 · 109 N, j = 104 kg/m, X0 = 1 m, and W0 = 1 rad/sec.

Dependences k1(f) and k2(f) are given in Fig. 2a. In addition to the longitudinal displacement wave with the
known dispersion curve k1(f), an independent dispersing rotation wave with wavenumber k2(f) and lower frequency
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Fig. 2. Wavenumber (a) and phase velocity (b) versus frequency for longitudinal displacement and
rotation waves in a Cosserat continuum.

w0 arises in the medium. Figure 2b gives the corresponding dependences of the phase velocity on frequency. It is
evident that the velocity C5 is the limiting one for the rotation wave.

The solutions for transverse rotation bulk waves are obtained from the conditions Ux(z) = 0, Uy(z) = Uy,
Uz(z) = Uz, Wx(z) = 0, Wy(z) = Wy, and Wz(z) = Wz . In this case, from Eqs. (1.8) and (1.9), we obtain
two independent systems of equations for the wavenumber and frequency for horizontal and vertically polarized
transverse waves, respectively:

(ρf2 − k2(μ + α))Uz + 2ikαWy = 0, ((γ + ε)k2 + 4α − jf2)Wy + 2ikαUz = 0,

(ρf2 − k2(μ + α))Uy − 2ikαWz = 0, ((γ + ε)k2 + 4α − jf2)Wz − 2ikαUy = 0.
(2.2)

Because of isotropy of the medium, the system of equations is invariant under rotation of the coordinate system
through an angle of 90◦; therefore; from both systems, we obtain the same dispersion equation

(γ + ε)(μ + α)k4 + (4αμ − (j(μ + α) + ρ(γ + ε))f2)k2 + jρf4 − 4αρf2 = 0,

which can be written in dimensionless form

k4 +
(
4A2 − C2

3 + C2
4

C2
3C2

4

f2
)
k2 +

f4

C2
3C2

4

− 4A2

C2
2

f2 = 0,

A2 = X2
0

μα

(μ + α)(γ + ε)
, C2

2 =
μ

ρX2
0f2

0

, C2
3 =

μ + α

ρX2
0f2

0

, C2
4 =

γ + ε

jX2
0f2

0

.

This equation has two roots:

k3(f) =
√

Ap, k4(f) =
√

Am. (2.3)

Here

Ap =
C2

4 + C2
3

2C2
3C2

4

f2 − 2A2 +

√
f4

C4
3 + C4

4 − 2C2
4C2

3

4C4
3C4

4

− 2f2
A2(C2

3C2
2 + C2

4C2
2 − 2C2

4C2
3 )

C2
3C2

4C2
2

+ 4A4,

Am =
C2

4 + C2
3

2C2
3C2

4

f2 − 2A2 −
√

f4
C4

3 + C4
4 − 2C2

4C2
3

4C4
3C4

4

− 2f2
A2(C2

3C2
2 + C2

4C2
2 − 2C2

4C2
3 )

C2
3C2

4C2
2

+ 4A4.

This solution is interpreted as follows.
1. In the case of a Cosserat continuum, a transverse wave has two wave modes with wavenumbers k3(f)

and k4(f) (by virtue of isotropy of the media, the horizontally and vertically polarized transverse waves are in-
distinguishable; therefore, each of them has two wave modes). This feature distinguishes solutions (2.3) from the
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Fig. 3. Wavenumber (a) and phase velocity (b) versus frequency for transverse bulk waves in a
Cosserat continuum.

classical case, where one wave mode exists. In this case, the quantities Ap and Am in the solutions for Rayleigh
waves, surface transverse waves, and Lamb waves [11, 13] are the squared wavenumbers of the two modes of the
transverse bulk wave.

2. In the transverse waves, the components of the displacement and rotation vectors are related to each
other by

Wy = iUz
ρf2 − k2μ − k2α

2kα
, Wz = iUy

−ρf2 + k2μ + k2α

2kα

(the quantities Uz and Uy can take arbitrary values). These components can exist separately only for α = 0, as
follows from system (2.2).

3. Both wave modes exhibit dispersion (Fig. 3). One of the modes has the lower critical frequency [in this
case, this frequency is determined from Eqs. (2.3) and is not equal to the critical frequency w0 of the longitudinal
waves]. In addition, as f → ∞, the dimensionless parameters C3 and C4 included in solutions (2.3) are asymptotic
velocities of the transverse bulk wave modes (Fig. 3b).

Conclusions. The main result obtained in this study is as follows. An interpretation was given for the
parameters C3, C4, and C5 included in the previously obtained solutions for surface waves [11, 13]. It was shown
that, as f → ∞, the dimensionless parameters C3 and C4 are asymptotic velocities of the transverse bulk wave
modes whereas the velocity C5 is the limiting one for the longitudinal rotation waves.

Unlike in the classical case, where transverse waves have only one wave mode, in solutions (2.1) and (2.3),
four wave modes were obtained which correspond to longitudinal displacement waves, longitudinal rotation waves,
and transverse waves in which the displacement directions are perpendicular to the wave propagation direction and
the rotation directions are perpendicular to the wave propagation direction and the displacement direction. This
result generally agrees with the results of [9]. In the case of transverse waves, the component of the vibration process
corresponding to displacements exists simultaneously with the component characterized by the microrotation vector.
In [9], this circumstance was ignored, which led to the erroneous conclusion that two transverse displacement and
rotation waves can exist separately.

It was found that two of the four indicated wave modes have the lower critical frequency. At frequencies
below this frequency, the wave cannot propagate. In the classical case and in the case of surface waves in a Cosserat
continuum, this effect is not observed. However, it has been shown [4] that a similar lower critical frequency exists
for Rayleigh waves within the framework of the reduced Cosserat continuum model for α = 0. We note that
experimental results in support of the presence of the forbidden frequency zones for bulk waves are not available.

This work was supported by the U.S. Civilian Research and Development Foundation (CRDF), the program
of Basic Research and Higher Education (Grant No. Y2-P–09-04), and the Russian Foundation for Basic Research
(Grant No. 07-01-96029-p Ural-a).
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